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Abstract
Traversing complex Abstract Syntax Trees (ASTs) typically

requires large amounts of tedious boilerplate code. For many

operations most of the code simply walks the structure, and

only a small portion of the code implements the functional-

ity that motivated the traversal in the first place. This paper

presents a type-safe Java framework called Shy that removes

much of this boilerplate code. In Shy Object Algebras are

used to describe complex and extensible AST structures. Us-

ing Java annotations Shy generates generic boilerplate code

for various types of traversals. For a concrete traversal, users

of Shy can then inherit from the generated code and over-

ride only the interesting cases. Consequently, the amount of

code that users need to write is significantly smaller. More-

over, traversals using the Shy framework are also much more

structure shy, becoming more adaptive to future changes or

extensions to the AST structure. To prove the effectiveness

of the approach, we applied Shy in the implementation of

a domain-specific questionnaire language. Our results show

that for a large number of traversals there was a significant

reduction in the amount of user-defined code.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications—Object-Oriented

Programming; F.3.3 [Logics and Meanings of Programs]:

Studies of Program Constructs

General Terms Languages

Keywords Object algebras, boilerplate code, Java, adaptive

object-oriented programming

1. Introduction
Various language processing tools or libraries for program-

ming languages, domain-specific languages, mark-up lan-

guages like HTML, or data-interchange languages like XML

or JSON require complex Abstract Syntax Tree (AST) struc-

tures. In those applications ASTs are the key data structure

needed to model the various constructs of these languages.

Such ASTs have various different types of nodes, which can

range from a few dozen to several hundred kinds of nodes

(for example in the ASTs of languages like Java or Cobol).

Static types are helpful to deal with such complex ASTs.

Static types formalize the distinction between different kinds

of nodes. Furthermore the distinctions are helpful to ensure

that traversals over these ASTs have an appropriate piece of

code that deals with each different type of node. This can

prevent a large class of run-time errors that would not be

detected otherwise.

Unfortunately, when traversing such ASTs, the number of

nodes and the enforced type distinctions between nodes can

lead to so-called boilerplate code [11]: code that is similar

for most types of nodes and which essentially just walks the

structure. Operations where the “interesting” code is limited

to only a small portion of nodes are called structure shy [17].

A typical example is computing the free variables of an

expression in some programming language. In this case, the

interesting code occurs in the nodes representing the binding

and variable constructs. In all other cases, the code would

just deal with walking the structure. In ASTs with dozens or

hundreds of kinds of nodes, having to explicitly write code

for each kind of node is both tedious and error-prone.

The boilerplate problem in implementing traversals has

received considerable attention in the past. For example,

both Adaptive Object-Oriented Programming (AOOP) [17]

and Strategic Programming [3, 26] are aimed partly at solv-

ing this problem. Most approaches to AOOP and strate-

gic programming use some meta-programming techniques,

such as code generation or reflection. The use of meta-

programming offers programmers an easy way to avoid hav-

ing to write boilerplate code. This has important benefits:

users have to write much less code; and the code becomes

much more adaptive to changes. Nevertheless, such meta-
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programming based approaches usually come at the cost of

other desirable properties, such as type-safety, extensibility

or separate compilation. The functional programming com-

munity has also studied the problem. For instance, the pop-

ular “Scrap your boilerplate” [11] approach supports type-

safety and separate compilation. Most of the techniques used

in functional languages, however, cannot be easily ported to

mainstream OO languages like Java, and are limited in terms

of extensibility.

This paper presents a Java framework called Shy that

allows users to define type-safe and extensible structure-

shy operations. Shy uses Object Algebras [19] to describe

ASTs, and to write operations over ASTs in a style similar

to writing folds in functional programming. However unlike

standard folds in functional programming, Object Algebras

are extensible: when new kinds of nodes are introduced in

the data type, the operations can be extended as well, without

changing existing code.

In Shy Object Algebra interfaces are combined with Java

annotations to generate generic traversal code automatically.

The generated code accounts for four different types of tra-

versals: queries; transformations; generalized queries; and

contextual transformations. Each of these four types of tra-

versals is implemented as an Object Algebra. Programmers

who want to implement structure-shy traversals can then in-

herit from one of these four Object Algebras, and override

only the cases that deal with the interesting parts of the

traversal. Consequently traversals written in Shy are:

• Small in size: With Shy the amount of code that pro-

grammers need to write a structure-shy traversal is sig-

nificantly smaller. Often traversals in Shy are imple-

mentable in just a few lines of code, even for complex

ASTs with hundreds of different types of nodes.
• Adaptive and structure shy: Traversals written with

Shy can omit boilerplate code, making traversals more

adaptive to future changes or extensions to the data type.
• Type-safe: Shy traversals are directly written in Java and

the Java type-system ensures type-safety. No run-time

casts are needed for generic traversal code or for user-

defined traversal code.
• Extensible with separate compilation: Traversals in-

herit type-safe extensibility from Object Algebras. Both

traversals and the AST structures are extensible. Thus it is

possible to reuse traversal code for ASTs extended with

additional node types. Furthermore Shy traversals sup-

port separate compilation.
• Implemented in plain Java: Shy traversals do not re-

quire a new tool or language. The approach is library

based and only uses Java annotations.

To prove the effectiveness of the approach, we have applied

Shy in the implementation of QL, a domain-specific lan-

guage (DSL) for defining questionnaires that has been used

before as a benchmark language [7, 9]. Our results (see de-

tails in Section 11) show that for a large number of travers-

als there was a significant reduction in the amount of user-

defined code: only 4% to 21% of the AST cases had to be

implemented in comparison with code written without Shy.

Although Shy’s functional programming inspired idioms

are new to mainstream Java programmers, the use of stan-

dard Java constructs and techniques makes Shy easy to im-

plement, integrate in existing environments, and use. More-

over, although Java was chosen as the implementation lan-

guage for Shy, our approach should apply to any object-

oriented language with support for generics and annotations.

In summary, the contributions of this paper are:

• Design patterns for generic traversals. We provide a

set of design patterns for various types of traversals us-

ing Object Algebras, including: queries, transformations,

generalized queries and contextual transformations.
• The Shy Java framework. We show that those design

patterns can be automatically generated for a given Ob-

ject Algebra interface. The Shy framework1 realizes this

idea by using Java annotations to automatically generate

generic traversals.
• Applications and examples: We show various examples

of traversals, such as free variables and substitution op-

erations, implemented concisely with Shy. Moreover we

illustrate how certain kinds of desugarings can be imple-

mented using transformations, and how multiple trans-

formations can be chained together in a pipeline.
• Case study. We illustrate the benefits of Shy using a case

study based on the QL domain-specific language. The

results of our case study show significant savings in terms

of user-defined traversal code. The case study also shows

that Shy does not incur significant performance overhead

compared to a regular AST-based implementation.

2. Background: Object Algebras
Object Algebras capture a design pattern to solve the Ex-

pression Problem [29]. As a result Object Algebras support

modular and type-safe extensibility in two dimensions: data

variants and operations. Object Algebras can be used con-

veniently to model recursive data types, such as ASTs. Here

we briefly introduce Object Algebras using the example of a

simple expression language.

interface ExpAlg<E> {
E Lit(int n);
E Add(E l, E r);

}

The above code shows an Object Algebra interface which

models literal and addition expressions. The interface resem-

bles an abstract factory interface, but instead of constructing

objects of a concrete type, the result is abstract through the

type parameter E. A concrete Object Algebra will implement

such an interface by instantiating the type parameter with

1 Available at: https://github.com/JasonCHU/SYBwithOA
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a type that constructs objects for a particular purpose. For

instance, evaluation of expressions can be implemented as

follows:

class Eval implements ExpAlg<Integer> {
public Integer Lit(int n) {
return n;

}
public Integer Add(Integer l, Integer r) {
return l + r;

}
}

Using this algebra to create expressions will immediately

evaluate the expression to its result. To add another operation

the interface ExpAlg is implemented again. As an example,

the class Print presented below shows a simple printing

operation on expressions. Both examples illustrate extension

in the dimension of operations.

class Print implements ExpAlg<String> {
public String Lit(int n) { return "" + n; }
public String Add(String l, String r) {
return l + " + " + r;

}
}

The other dimension of extensibility (adding data vari-

ants) is realized by extending the Object Algebra interface

itself. For instance, the interface MulAlg defined below ex-

tends the original ExpAlg with multiplication expressions.

interface MulAlg<E> extends ExpAlg<E> {
E Mul(E l, E r);

}

The key feature of Object Algebras is that the existing op-

erations (evaluation and printing) can now be extended to

support multiplication without having to change the existing

Eval and Print classes. For example, evaluation is extended

with multiplication as follows:

class MulEval extends Eval
implements MulAlg<Integer> {
public Integer Mul(Integer l, Integer r) {
return l * r;

}
}

Client code The client code below shows how structures

are created and operations are applied using Object Alge-

bras. For example, The generic interface ExpAlg is used to

create a structure as follows:

<E> E makeExp(ExpAlg<E> alg) {
return alg.Add(alg.Lit(2), alg.Lit(3));

}

Such a structure represents the expression “2 + 3”. Similar-

ly, the extended interface MulAlg supporting multiplication

creates the expression “(2 + 3) * 4” as follows:

<E> E makeMul(MulAlg<E> alg) {
return alg.Mul(alg.Add(alg.Lit(2), alg.Lit(3)),

alg.Lit(4));
}

form DriverLicense {
name: "What is your name?" string
age: "What is your age?" integer
if (age >= 18)
license: "Have a driver’s license?" boolean

}

Figure 1. Example QL questionnaire: driver’s license.

Users can then pass instances of Object Algebras to those

structures for applying operations:

println(makeExp(new Eval()));
println(makeExp(new Print()));
println(makeMul(new MulEval()));

The results are “5”, “2 + 3” and “20”, respectively.

In summary, Object Algebra interfaces describe recur-

sive data types, and implementations of those interfaces rep-

resent operations. Extending the interface allows develop-

ers to extend the data type with new data variants, and

(re)implementing the interface allows developers to define

operations. Finally, extension in both dimensions is fully

type-safe and does not compromise separate compilation.

3. An Overview of Shy
This section starts by illustrating the problem of boilerplate

code when implementing traversals of complex structures. It

then shows how Shy addresses the problem using a combi-

nation of Object Algebras [19] and Java annotations.

3.1 Traversing Object-Oriented ASTs
We start by introducing the problem of boilerplate code by

considering a simplified variant of the QL language used in

our case study [9], called MiniQL. Just like QL, MiniQL can

be used to describe interactive questionnaires.

An example MiniQL program is shown in Figure 1. The

questionnaire first asks for the user’s name and age, and then,

if the age is greater than or equal to 18, asks if the user has a

driver’s license. Because of the conditional construct, the last

question will only appear when the user is actually eligible

to have driver’s license.

MiniQL’s abstract syntax contains forms, statements (if-

then and question) and expressions (only literals, variables

and greater-than-or-equal). A traditional OO implementation

is shown on the left Figure 2. A form (class Form) has a name

and consists of a list of statements. Statements are condition-

als (If) which contain an expression and a statement body,

and questions (Question) which have a name, label and type.

Expressions are standard, but limited to literals (Lit), vari-

ables (Var) and greater-than-or-equal (GEq).

The code in Figure 2 also shows a query over MiniQL

structures, namely the collection of used variables. The op-

eration is defined using the method usedVars, declared in

the abstract superclasses Stmt and Exp (omitted for brevity),

and implemented in the concrete statement and expression

classes. As can be seen, the only interesting bit of code is
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class Form {
String name; List<Stmt> body;
Set<String> usedVars() {
Set<String> vars = new HashSet<>();
body.forEach(s -> vars.addAll(s.usedVars()));
return vars;

}
}

class If extends Stmt {
Exp cond; Stmt then;
Set<String> usedVars() {
Set<String> vars=new HashSet<>(cond.usedVars());
vars.addAll(then.usedVars());
return vars;

}
}

class Question extends Stmt {
String name, label, type;
Set<String> usedVars() { return emptySet(); }

}

class Lit extends Exp {
int n;
Set<String> usedVars() { return emptySet(); }

}

class Var extends Exp {
String x;
Set<String> usedVars() { return singleton(x); }

}

class GEq extends Exp {
Exp lhs, rhs;
Set<String> usedVars() {
Set<String> vars = new HashSet<>(lhs.usedVars());
vars.addAll(rhs.usedVars());
return vars;

}
}

class UsedVars implements
QLAlg<Set<String>, Set<String>, Set<String>> {

Set<String> Form(String n, List<Set<String>> b) {
Set<String> vars = new HashSet<>();
b.forEach(s -> vars.addAll(s));
return vars;

}

Set<String> If(Set<String> c, Set<String> t) {
Set<String> vars = new HashSet<>(c);
vars.addAll(t);
return vars;

}

Set<String> Question(String n,String l,String t) {
return Collections.emptySet();

}

Set<String> Lit(int x) {
return Collections.emptySet();

}

Set<String> Var(String x) {
return Collections.singleton(x);

}

Set<String> GEq(Set<String> l, Set<String> r) {
Set<String> vars = new HashSet<>(l);
vars.addAll(r);
return vars;

}
}

Figure 2. Implementing the “used variables” operation using traditional ASTs (left) and Object Algebras (right).

the usedVars method in class Var. All other implementations

merely deal with aggregating results of their child nodes, or

returning a default empty set.

The boilerplate code exhibited in the usedVars query

often also applies to transformations. Consider for example

a rename transformation which takes a Form and returns

another form where the occurrences of the specified variable

are renamed. Again, the only interesting cases would be in

the Var and Question classes, where the actual renaming

is applied. All other classes, however, require boilerplate

to recreate the structure. The full code in Appendix A.1.1

contains a simple example of such a rename operation as

well.

In addition to the significant amount of boilerplate code,

there is another drawback to the traditional OO solution,

which is that it does not support extensibility along the di-

mension of operations. Each new operation requires perva-

sive changes across the AST classes.

3.2 Modeling MiniQL with Object Algebras
The right-hand side of Figure 2 shows the used variables op-

eration implemented using Object Algebras. The operation

is a class implementing the Object Algebra interface (QLAlg)

shown in Figure 3.

The UsedVars class provides an implementation for each

of the methods in the object algebra interface, which togeth-

er define the full used variables operation. Since the result of

collecting those variables is Set<String>, all the type pa-

rameters are set to that type. Most of the method imple-

mentations simply traverse the child nodes and accumulate

the variable names. That is the case, for example, for Form.

Again, the only method implementation that does something

different is Var, which returns the x argument.
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@Algebra
public interface QLAlg<E, S, F> {
F Form(String name, List<S> body);
S If(E cond, S then);
S Question(String name,String label,String type);
E Lit(int n);
E Var(String x);
E GEq(E lhs, E rhs);

}

Figure 3. Object Algebra interface of the MiniQL abstract

syntax.

Unlike the standard OOP implementation, Object Alge-

bras support adding operations without changing existing

code. For instance, the renaming operation mentioned above

could be realized as follows:

class Rename<E, S, F> implements QLAlg<E, S, F> {
QLAlg<E, S, F> alg;
String from, to;

F Form(String n, List<S> b) {
return alg.Form(n, b);

}
S Question(String n, String l, String t) {
n = n.equals(from) ? to : n;
return alg.Question(n, l, t);

}
...
E Var(String x) {
x = x.equals(from) ? to : x;
return alg.Var(x);

}
}

Each constructor reconstructs a new node using an auxil-

iary MiniQL algebra alg. Almost all the method implemen-

tations reconstruct the structure with no changes using the

methods of alg. For instance, the Form method just recre-

ates the form in the algebra alg. The other boilerplate cases

are omitted for brevity; the full code can be found in Ap-

pendix A.1.2. The two exceptions are the methods Question

and Var, where the identifiers with the given name from are

renamed to to.

Although the Object Algebra encoding of MiniQL solves

the problem of extensibility, the traversal code still contains

boilerplate code. In both UsedVars and Rename, the only

interesting code is in a small number of cases. Ideally, we

would like to write only the code for the interesting cases,

and somehow “inherit” the tedious traversal code.

3.3 Shy: An Object Algebra Framework for Traversals
To deal with the boilerplate problem we created Shy: a Java

Object Algebras framework, which provides a number of

generic traversals at the cost of a single annotation. The key

idea in Shy is to automatically create highly generic Object

Algebras, which encapsulate common types of traversals. In

particular Shy supports generic queries and transformations.

class UsedVars implements QLAlgQuery<Set<String>> {
public Monoid<Set<String>> m() {
return new SetMonoid<String>();

}
public Set<String> Var(String name) {
return Collections.singleton(name);

}
}

Figure 4. MiniQL used variables, implemented with Shy.

class Rename<E, S, F> extends QLAlgTrans<E, S, F> {
String from, to;
Rename(QLAlg<E,S,F> alg, String from, String to) {
super(alg);
this.from = from;
this.to = to;

}
public S Question(String n, String l, String t) {
n = n.equals(from) ? to : n;
return qLAlg().Question(n, l, t);

}
public E Var(String x) {
x = x.equals(from) ? to : x;
return qLAlg().Var(x);

}
}

Figure 5. MiniQL renaming, implemented with Shy.

The two types of traversals are, for instance, sufficient to

capture the used variables and renaming operations.

With Shy, programmers just need to add the @Algebra an-

notation to the definition of QLAlg to get the code for generic

queries and transformations. An example of that annotation

is already shown in Figure 3. Triggered by the annotation,

Shy generates base traversal interfaces with Java 8 default

methods which can then be overridden to implement specif-

ic behavior. For instance, for the MiniQL algebra, Shy gen-

erates interfaces QLAlgQuery and QLAlgTrans which can be

used to implement UsedVars and Rename in only a fraction of

the code2.

The Shy-based implementation of both operations is

shown in Figure 4 and 5. In contrast to Figure 2, the code in

Figure 4 is much shorter. By implementing the QLAlgQuery

and QLAlgTrans interface, only the methods Question and

Var need to be overridden: all the other methods perform ba-

sic accumulation for queries and basic reconstruction in the

case of transformations. For queries the only extra thing a

programmer has to do is to provide an instance of a monoid,

which is used to specify how to accumulate the results during

the traversal. Similarly, for transformations, the programmer

needs to pass an algebra for providing the constructors for

creating the result of a transformation.

2 The generated code is available in Appendix A.1.3 and A.1.4.
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Client code To use the queries and operations on a ques-

tionnaire like the one in Figure 1, we need a function to cre-

ate a structure using the generic MiniQL interface:

<E, S, F> F makeQL(QLAlg<E, S, F> alg) {
return alg.Form("DriverLicense", Arrays.asList(

alg.Question("name", "Name?", "string"),
alg.Question("age", "Age?", "integer"),
alg.If(alg.GEq(alg.Var("age"),

alg.Lit(18)),
alg.Question("license",

"License?", "boolean"))));
}

Since both queries and transformations are implementa-

tions of the MiniQL interface, they can be passed to the

makeQL function defined above:

println(makeQL(new UsedVars()));
println(makeQL(new Rename<>(new UsedVars(),

"age", "AGE")));

This code prints out [age] and [AGE], which are the set of

used variables before and after renaming, respectively. Note

how the Rename transformation transforms the questionnaire

into the UsedVars algebra.

The remainder of the paper provides the details and im-

plementation techniques used in Shy. Besides basic queries

and transformations, Shy also supports two generalizations

of these types of traversals called generalized queries and

contextual transformations.

4. Queries
This section shows the ideas behind generic queries and how

they are implemented in Shy. A query is an operation that

traverses a structure and computes some aggregate value.

The inspiration for queries comes from similar types of

traversals used in functional programming libraries, such as

“Scrap your Boilerplate” [11].

The following code shows a variant of the type of expres-

sions shown in Section 2, represented as the Object Algebra

interface ExpAlg.

@Algebra
interface ExpAlg<Exp> {
Exp Var(String s);
Exp Lit(int i);
Exp Add(Exp e1, Exp e2);

}

We will use this minimal Object Algebra interface through-

out the rest of the paper to illustrate the various different

types of traversals supported by Shy. Three different kinds

of nodes exist: a numeric literal, a variable or the addition of

two expressions. Queries are illustrated by implementing an

operation to compute the free variables in an expression.

interface FreeVars extends ExpAlg<Set<String>> {
default Set<String> Var(String s) {
return Collections.singleton(s);

}
default Set<String> Lit(int i) {
return Collections.emptySet();

}
default Set<String> Add(Set<String> e1,

Set<String> e2) {
return Stream.concat(e1.stream(), e2.stream())

.collect(Collectors.toSet());
}

}

Figure 6. Free variables as an Object Algebra.

4.1 Boilerplate Queries
Figure 6 shows a standard approach for computing free vari-

ables using Object Algebras3. A set of strings is used to col-

lect the names of the free variables. The Var method returns

a singleton set of s, whereas the Lit method returns an emp-

ty set. The more interesting case is in the Add method, where

the two sets are joined into one.

The typical pattern of a query is to collect some informa-

tion from some of the nodes of the structure, and to aggre-

gate the information that comes from multiple child nodes.

For example, in the case of free variables, the strings from

the Var nodes are collected, and in the Add nodes the infor-

mation from multiple children is merged into a single set.

An important observation about queries is that the code

to aggregate information tends to be the same: if we had

a subtraction node, the code would be essentially identical

to Add. Moreover, there are only very few types of nodes

that contain relevant information for the query. For nodes

that contain information that is not relevant to the query,

we simply return a neutral value (such as the empty set in

Lit). Nonetheless, a programmer has to write this boring

boilerplate code handling the traversals. While for the small

structure presented here this may not look too daunting, in a

large structure with dozens or even hundreds of constructors

such code becomes a significant burden.

4.2 Generic Queries
A better approach would be to abstract the generic traver-

sal and accumulation code for queries. This way, when pro-

grammers need to implement query operations, they can

simply reuse the generic traversal code and focus only on

dealing with the nodes that do something interesting.

The code that captures the aggregation and collection

of information can be captured by a well-known algebraic

structure called a monoid. Monoids are commonly used in

functional programming for such purposes, but they are per-

3 Here and in the following we will use interfaces with default-methods

(as introduced in Java 8) to combine queries and transformations using

multiple inheritance.
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interface ExpAlgQuery<Exp> extends ExpAlg<Exp> {
Monoid<Exp> m();
default Exp Var(String s) { return m().empty(); }
default Exp Lit(int i) { return m().empty(); }
default Exp Add(Exp e1, Exp e2) {
return m().join(e1, e2);

}
}

Figure 7. Generic queries using a monoid.

haps less commonly known in object-oriented programming.

The interface of a monoid is defined as follows:

interface Monoid<R> {
R join(R x, R y);
R empty();

}

Intuitively, the join() method is used to combine the infor-

mation from substructures, and empty() is an indicator of

“no information”. Using the monoid operations alone, it is

possible to write a generic query. Figure 7 shows how this is

achieved. In nodes that contain child nodes, such as Add, the

information is aggregated using join. In nodes that contain

other information, such as Var and Lit, the query returns

empty. This allows concrete queries to be implemented by

overriding methods from multiple, different algebras.

4.3 Free Variables with Generic Queries
The ExpAlgQuery interface provides an alternative way to de-

fine the free variables operation. Instead of directly defining

the free variables operation, ExpAlgQuery can be inherited,

provided that the method m() is implemented. In the case of

free variables, the monoid returned by m() is an implemen-

tation of the Monoid interface for sets:

class SetMonoid<X> implements Monoid<Set<X>> {
public Set<X> empty() {
return Collections.emptySet();

}
public Set<X> join(Set<X> x, Set<X> y) {
Set<X> tmp = new HashSet<>(x);
tmp.addAll(y);
return tmp;

}
}

The method empty() corresponds to the empty set, and join

() is implemented as union. Using this monoid the free

variables operation is defined as follows:

interface FreeVars extends ExpAlgQuery<Set<String>>
{
default Monoid<Set<String>> m() {
return new SetMonoid<String>();

}
default Set<String> Var(String s) {
return Collections.singleton(s);

}
}

There are two important differences to the implementation

in Figure 6. The first difference is that the monoid to be used

needs to be specified. However, the code for the monoid

is still quite short (only requires two method implementa-

tions) and, more importantly, it is highly reusable. Indeed

the SetMonoid is reused throughout the paper on various ex-

amples of queries. Because monoid instances are so gener-

al purpose, the Shy library already contains many common

monoid implementations. Users do not usually have to de-

fine these instances themselves. The second difference is that

now only the case for variables needs to be defined: the other

cases are inherited from ExpAlgQuery.

The traversal code in ExpAlgQuery is entirely mechanical

and can be automatically generated. This is precisely what

Shy does. Annotating algebra interfaces, such as ExpAlg,

with the annotation @Algebra, triggers automatic generation

of generic query interfaces, such as ExpAlgQuery. The gen-

eral template in Shy for an algebra Alg<X1, ..., Xn>, with

constructors f1, ..., fm is shown next:

interface AlgQ<R> extends Alg<R,...,R> {
Monoid<R> m();

default R fi() {
return m().empty();

}

default R f j(R p1, ..., R pk) {
return m().join(p1, m().join(p2, ..., m().join(

pk−1, pk)...)));
}
...

}

Note that interface AlgQ extends Alg so that all type pa-

rameters are unified as type R. All arguments to a constructor

f j are combined with join from the monoid m(). Arguments

with primitive types, like int, boolean or String, are ignored

by default.

5. Generalized Queries
The previous section introduced simple queries where each

constructor contributes to a single monoid. Recursive data

types, however, often have multiple syntactic categories, for

instance expressions and statements. In such multi-sorted

Object Algebras each sort is represented by a different type

parameter in the algebra interface. In this section we present

generalized queries, where each such type parameter can be

instantiated to different monoids. It turns out that, for some

operations, this generalized version of queries is needed.

Example: Data Dependencies. A simple example of a gen-

eralized query is the extraction of the data dependencies

between assignment statements and variables in simple im-

perative programs. To express this query, the simple ExpAlg

is first extended with statements using the StatAlg interface

defined as follows:
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interface G_StatAlgQuery<Exp, Stat>
extends StatAlg<Exp, Stat> {

Monoid<Exp> mExp();
Monoid<Stat> mStat();

default Stat Assign(String x, Exp e) {
return mStat().empty();

}
default Stat Seq(Stat s1, Stat s2) {
return mStat().join(s1, s2);

}
}

Figure 8. Default implementation of generalized queries

over many-sorted statement algebra.

@Algebra
public interface StatAlg<Exp, Stat> {
Stat Seq(Stat s1, Stat s2);
Stat Assign(String x, Exp e);

}

The StatAlg interface defines statement constructors for

sequential composition (Seq) and assignment (Assign). The

interface does not extend the ExpAlg interface; we rely on

multiple inheritance of Java interfaces to combine imple-

mentations of these interfaces later (see Figure 9).

The generated default implementation of queries over

statements is shown in Figure 8, while the generated code for

expressions (G_ExpAlgQuery) is presented in Appendix A.1.5.

Note that the interface declares two monoids, one for each

sort. Since the Assign and Seq constructors create state-

ments, they return elements of the mStat() monoid. Fur-

thermore, because it is impossible to automatically join a

monoid over one type with a monoid over another type, the

e argument in Assign is ignored. As a result, a concrete im-

plementation normally has to override this case to deal with

the transition from expressions to statements.

Data dependencies are created by assignment statements:

for a statement Assign(String x, Exp e) method, the vari-

able x will depend on all variables appearing in e. The result

of extracting such dependencies can be represented as binary

relation (a set of pairs). In expressions we need to collect the

free variables, which can be stored in a set of strings. Thus

in this traversal two monoids are involved: a monoid for a

set of pairs of strings; and a monoid for a set of strings.

To implement the extraction of data dependencies only

two cases have to be implemented: the variable (Var) case

from the ExpAlg signature; and the assignment (Assign) case

from the StatAlg signature. The implementation is shown

in Figure 9. Note that the Assign case takes the input Set<

String> e and uses it to create the dependency relation. The

propagation of dependencies across sequential composition

is automatic, as is the propagation of the set of variables

through the different types of expressions.

interface DepGraph extends
G_ExpAlgQuery<Set<String>>,
G_StatAlgQuery<Set<String>, Set<Pair<String,

String>>> {
default Monoid<Set<String>> mExp(){
return new SetMonoid<>();

}
default Monoid<Set<Pair<String, String>>> mStat(){
return new SetMonoid<>();

}
default Set<String> Var(String x){
return Collections.singleton(x);

}
default Set<Pair<String, String>>

Assign(String x, Set<String> e){
Set<Pair<String, String>> deps = new HashSet<>();
e.forEach(y -> deps.add(new Pair<>(x, y)));
return deps;

}
}

Figure 9. Dependency graph with a generalized query.

Client code A structure using the generic interfaces ExpAlg

and StatAlg is created as follows:

<E, S, A extends ExpAlg<E> & StatAlg<E, S>>
S makeStat(A a) {
return a.Seq(
a.Assign("x", a.Add(a.Var("x"), a.Lit(3))),
a.Assign("y", a.Add(a.Var("x"), a.Var("z"))));

}

Note that here the argument of makeStat must implement

both ExpAlg and StatAlg. To achieve this in Java, makeStat

has a type parameter A which is required to implement

both interfaces. Using makeStat we can pass an instance

of DepGraph to compute the dependencies of the statement.

println(makeStat(new DepGraph(){}));

The result is [<x, x>, <y, x>, <y, z>], as expected.

6. Transformations
Queries are a way to extract information from a data struc-

ture. Transformations, on the other hand, allow data struc-

tures to be transformed into new structures. Just as with

queries, we can distinguish code that deals with traversing

the data structure from code that actually transforms the

structure. In this section we show how to avoid most traver-

sal boilerplate code in the context of transformations using

Shy.

6.1 Transformations, Object Algebra Style
A simple example of a transformation algebra, using the

Object Algebra interface ExpAlg, is substituting expressions

for variables. A manual implementation based on Object

Algebras is shown in Figure 10.

The expression to be substituted, and the variable to sub-

stitute for are provided by the methods e() and x() respec-

tively. The method expAlg() is an instance of ExpAlg on
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interface SubstVar<Exp> extends ExpAlg<Exp> {
ExpAlg<Exp> expAlg();
String x(); Exp e();
default Exp Var(String s) {
return s.equals(x())? e(): expAlg().Var(s);

}
default Exp Lit(int i) { return expAlg().Lit(i); }
default Exp Add(Exp e1, Exp e2) {
return expAlg().Add(e1, e2);

}
}

Figure 10. A normal algebra-based implementation of vari-

able substitution.

which the transformation is based. Since Object Algebras are

factories, the transformation is executed immediately during

construction of tree structures. For instance, calling Var("x"

) on a SubstVar object with x() returning "x" immediately

returns the result of e() (the original variable expression is

never created). In the other cases, the original structure is

recreated in the algebra expAlg().

The following code shows how the transformation could

be used:

FreeVars fv = new FreeVars() {};
SubstVar<Set<String>> subst =
new SubstVar<Set<String>>() {
public ExpAlg<Set<String>> expAlg() {
return fv;

}
public String x() { return "x"; }
public Set<String> e() {
return fv.Add(fv.Lit(1),fv.Var("y"));

}
};
Set<String> res = subst.Var("x");

The SubstVar interface is instantiated with expAlg() re-

turning an instance of the FreeVars algebra defined earlier

(e.g., Figure 6). The x() method returns the variable to be

substituted ("x"). Finally, the e() returns a new expression

1+ y over the fv algebra. When expressions are created on

the subst algebra, the result is the set of free variables after
the substitution has taken place. As a result, res will contain

only "y".

Note that this allows pipelining of transformations: there

is no reason expAlg() cannot return yet another transforma-

tion algebra, for instance, a another instance of SubstVar re-

alizing a different substitution. We elaborate on composing

transformations this way in Section 11.2.

Unfortunately, we again observe the problem of traversal-

only boilerplate code: the Lit and Add methods of Figure 10

simply delegate to the base algebra expAlg(), without doing

any real work.

6.2 Generic Traversal Code
The boilerplate code in transformations can be avoided by

creating a super-interface containing default methods per-

interface ExpAlgTransform<Exp> extends ExpAlg<Exp> {
ExpAlg<Exp> expAlg();
default Exp Var(String s) {
return expAlg().Var(s);

}
default Exp Lit(int i) { return expAlg().Lit(i); }
default Exp Add(Exp e1, Exp e2) {
return expAlg().Add(e1, e2);

}
}

Figure 11. Traversal-only base interface for implementing

transformations of expressions.

interface AlgT <X1,...,Xn> extends Alg<X1,...,Xn> {
Alg<X1, ..., Xn> alg();

default Xi f j(X
1
p p1, ..., Xk

p pk) {

return alg().f j(p1, ..., pk);
}
...

}

Figure 12. Generic template for generating boilerplate of

transformations.

forming the traversal (shown in Figure 11). A concrete trans-

formation can then selectively override the cases of interest.

Variable substitution can now be implemented as follows:

interface SubstVar<Exp>
extends ExpAlgTransform<Exp> {

String x(); Exp e();
default Exp Var(String s) {
return s.equals(x())? e(): expAlg().Var(s);

}
}

In this case, only the method Var() is overridden.

Just like in the case of queries, the traversal code in

ExpAlgTransform is entirely mechanical and can be automat-

ically generated by Shy. Figure 12 shows the general tem-

plate for the generated code. Here AlgT extends Alg with the

same type parameters and the base algebra alg() is declared

inside.

7. Contextual Transformations
The previous section introduced a simple template for defin-

ing transformations. Transformations in this style may only

depend on global context information (e.g., x(), e()). Many

transformations, however, require context information that

might change during the traversal itself. In this section we

instantiate algebras over function types to obtain transforma-

tions which pass information down during traversal. Instead

of having the algebra methods delegate directly to base al-

gebra (e.g., expAlg()), this now happens indirectly through

closures that propagate the context information.

Figure 13 shows the general template for an Alg<X1, X2

, ..., Xn>, with constructors f1, ..., fm. Note that inter-
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interface AlgCT <C,X1,...,Xn>
extends Alg<Function<C,X1>,...,Function<C,Xn>> {

Alg<X1, ..., Xn> alg();

default Function<C, Xi> f j(Function<C,X
1
p> p1, ...,

Function<C,Xk
p> pk) {

return (c) -> alg().f j(p1.apply(c), ..., pk.apply(c
));

}
...

}

Figure 13. Generic template for generating boilerplate of

contextual transformations.

face AlgCT extends Alg and instantiates the type parameters

to Functions from the context argument C to the correspond-

ing sort Xi. Each constructor method now creates an anony-

mous function which, when invoked, calls the functions re-

ceived as parameters (p1 to pk) and only then creates a struc-

ture over the alg() algebra.

7.1 Example: Conversion to De Bruijn Indices
An example of a contextual transformation is converting

variables to De Bruijn indices in the lambda calculus [6].

Using De Bruijn indices, a variable occurrence is identified

by a natural number equal to the number of lambda terms be-

tween the variable occurrence and its binding lambda term.

Lambda terms expressed using De Bruijn indices are useful

because they are invariant with respect to alpha conversion.

The conversion to De Bruijn indices uses an object alge-

bra interface LamAlg with constructors for lambda abstrac-

tion (Lam) and application (Apply). See below:

@Algebra
public interface LamAlg<Exp> {
Exp Lam(String x, Exp e);
Exp Apply(Exp e1, Exp e2);

}

Shy automatically generates traversal code for transfor-

mation for both LamAlg and ExpAlg: G_LamAlgTransform and

G_ExpAlgTransform, respectively. The generated transforma-

tion code can be found in Appendix A.1.6. Using these in-

terfaces, the conversion to De Bruijn indices is realized as

shown in Figure 14. Note again that only the relevant cases

are overridden: Var (from ExpAlg) and Lam (from LamAlg).

Client code A structure using the generic interfaces ExpAlg

and LamAlg is created as follows:

<E, A extends ExpAlg<E> & LamAlg<E>>
E makeLamExp(A alg) {

return alg.Lam("x", alg.Lam("y",
alg.Add(alg.Var("x"), alg.Var("y"))));

}

It simply generates “λx.λy. x + y” as a generic lambda

expression. By instantiating the DeBruijn interface with a

PrintExpLam algebra (shown in Appendix A.1.8) passed in

as the base algebra, we can write the client code as follows:

interface DeBruijn<E> extends
G_ExpAlgTransform<List<String>, E>,
G_LamAlgTransform<List<String>, E> {

default Function<List<String>, E> Var(String p0) {
return xs ->

expAlg().Var("" + (xs.indexOf(p0) + 1));
}

default Function<List<String>, E> Lam(String x,
Function<List<String>, E> e) {

return xs ->
lamAlg().Lam("", e.apply(cons(x, xs)));

}
}

Figure 14. Converting variables to De Bruijn indices.

DeBruijn<String> deBruijn = new DeBruijn<String>() {
PrintExpLam alg = new PrintExpLam();
public ExpAlg<String> expAlg() { return alg; }
public LamAlg<String> lamAlg() { return alg; }

};
println(makeLamExp(deBruijn)

.apply(Collections.emptyList()));

The printed output is “\.\.(2 + 1)”, which corresponds to

original lambda term, but without variables.

8. Desugaring Transformations
In Section 6, we presented transformations, as well as the

generic traversals generated by Shy. Although different

constructors can be used in transforming a data structure,

the generic transformations generated by Shy are type-

preserving: they transform structures over one type (e.g.,

expressions) to different structures in the same type.

Desugaring transformations eliminate syntactic constructs

by transforming them to a combination of constructs in a

smaller base language. In this section we describe how Shy
can be applied to implement compositional desugarings in

a type-safe and extensible manner. In particular, the type

system will enforce that the resulting language is indeed

“smaller”, and that consequently the desugared construct is

guaranteed to be fully eliminated.

As an example, consider extending ExpAlg with a dou-

bling construct which multiplies its argument expression by

two. The Object Algebra interface that implements doubling

is defined as follows:

@Algebra
public interface DoubleAlg<E> {
E Double(E e);

}

An expression Double(e) can be desugared to Add(e,e).

The following code realizes this transformation by extending

the ExpAlgTransform interface, generated by Shy:

interface Desugar<E> extends DoubleAlg<E>,
ExpAlgTransform<E> {

default E Double(E e) {
return expAlg().Add(e, e);
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}
}

The interface Desugar exports the language DoubleAlg

and ExpAlg, but expAlg() (which is used as a factory for

output expressions) has type ExpAlg. Since ExpAlg does not

contain Double, the Double constructor cannot be used to

construct the output. As a result, the algebra Desugar trans-

forms into is guaranteed to be without any occurrences of

Double.

Expressions are created over the combined languages

DoubleAlg and ExpAlg:

<E, Alg extends DoubleAlg<E> & ExpAlg<E>>
E makeExp(Alg a) {
return a.Add(a.Lit(5), a.Double(a.Var("a")));

}

To illustrate the use of the Desugar algebra, here is the

code to print an expression in desugared form:

ExpAlg<String> print = new PrintExp();
Desugar<String> desugar = new Desugar<String>() {
@Override
public ExpAlg<String> expAlg() {
return print;

}
};
System.out.println(makeExp(desugar));

The kind of desugarings presented in this section are lim-

ited to bottom-up, compositional desugaring, corresponding

to factory methods directly invoking methods in a differ-

ent algebra. As a result, these desugarings are executed in a

bottom-up fashion: the arguments are always desugared be-

fore an expression itself is transformed. Because the trans-

formations are generic with respect to the carrier object of

the argument (as indicated by the type parameter E) it is

impossible to look at the arguments. This prevents desug-

arings to perform complex, deep pattern matching on the

argument structure. An added benefit, however, is that the

desugaring is automatically deforested: intermediate expres-

sion trees are never created.

9. Extensible Queries and Transformations
Shy queries and transformations inherit modular extensibili-

ty from the Object Algebra design pattern. New transforma-

tions or queries are simply added by extending the interfaces

generated by Shy. More interestingly, however, it is also pos-

sible to extend the data type with new constructors. Here we

briefly describe how queries and transformations can be ex-

tended in this case.

9.1 Linear Extensibility
Consider again the extension of the expression language

with lambda and application constructs (cf. Section 7). This

requires changing the free variables query, since variables

bound by Lam expressions need to be subtracted from the set

of free variables of the body. Instead of reimplementing the

query from scratch, it is possible to modularly extend the

existing FreeVars query:

interface FreeVarsWithLambda extends FreeVars,
LamAlgQuery<Set<String>> {

default Set<String> Lam(String x,Set<String> f) {
return f.stream().filter(y -> !y.equals(x))

.collect(toSet());
}

}

The interface FreeVarsWithLambda extends both the orig-

inal FreeVars query and the base query implementation that

was generated for the LamAlg interface defining the language

extension. Note again, that only the relevant method (Lam)

needs to be overridden.

For transformations the pattern is similar. To illustrate ex-

tension of transformation, consider the simple transforma-

tion that makes all variable occurrences unique, to distin-

guish multiple occurrences of the same name:

interface Unique<E> extends ExpAlgTransform<E> {
int nextInt();
default E Var(String s) {
return expAlg().Var(s + nextInt());

}
}

The Unique transformation uses a helper method nextInt

which returns consecutive integers on each call. The basic

transformation simply renames Var expressions. If, again,

the expression language is extended with lambda constructs,

the transformation needs to be updated as well to make

the variable in the binding position of lambda expression

unique. The following code shows how this can be done in a

modular fashion:

interface UniqueWithLambda<E> extends Unique<E>,
LamAlgTransform<E> {

default E Lam(String x, E e) {
return lamAlg().Lam(x + nextInt(), e);

}
}

Note that the transformation uses the lamAlg() algebra (from

LamAlgTransform), to create lambda expressions.

Figure 15 and 16 give a high level overview of query and

transformation extension using the examples for FreeVars

and Unique, respectively. In the case of queries, the ab-

stract m() method will be shared by both the FreeVars and

FreeVarsWithLambda interfaces. On the other hand, transfor-

mations are based on multiple base algebras, for sets of data

type constructors (e.g., expAlg() and lamAlg()).

Note finally that, in the current implementation of Shy
transformations, it is assumed that the language signatures

ExpAlg and LamAlg are completely independent. This is how-

ever, not an essential requirement. An alternative design

could have LamAlg be a proper extension of ExpAlg (i.e.

LamAlg<E> extends ExpAlg<E>). In that case, the generated

LamAlgTransform would need to refine the return type of the

expAlg() method.
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Figure 15. Extension of the FreeVars query.

Figure 16. Extension of the Unique transformation.

9.2 Independent Extensibility
Both Figure 15 and Figure 16 show extensions of queries and

transformations where the extensions directly inherit from

the concrete implementation of the operations (i.e. FreeVars

and Unique, respectively). It is also possible to make the

extensions more independent using multiple inheritance of

interfaces with default methods.

For instance, the Unique transformation for the LamAlg

language could also have been implemented independently

of Unique:

interface UniqueLam<E> extends LamAlgTransform<E> {
int nextInt();
default E Lam(String x, E e) {
return lamAlg().Lam(x + nextInt(), e);

}
}

Note that this interface declares the required dependen-

cy on nextInt(). Both transformations are combined inde-

pendently through multiple inheritance of interfaces. Both

Unique and UniqueLam declare the method nextInt(), but

since the declarations are abstract, they are identified. Imple-

mentations of the combined interface need to provide con-

crete implementations for nextInt(), expAlg() and lamAlg

():

class Combine<E> implements Unique<E>,UniqueLam<E> {
public int nextInt() { ... }
public ExpAlg<E> expAlg() { ... }
public LamAlg<E> lamAlg() { ... }

}

For queries the pattern is the same, except that only a

concrete implementation of m() has to be provided for the

combined interface.

10. Shy Implementation
Shy is implemented using the standard Java annotations

framework (javax.annotation) packaged in the Java Devel-

opment Kit. All of the generic traversals are automatically

generated by Shy for Object Algebra interfaces annotated

with @Algebra. When an Object Algebra interface is anno-

tated with @Algebra, Shy retrieves the required information

from the interface (such as the names and types of facto-

ry methods) using reflection. Shy then generates the code

based on the templates shown earlier. Furthermore, the Shy
framework includes the Monoid interface as well as several

useful implementations of it.

A major advantage of using standard Java annotations is

that the code generation of the generic traversals can be done

transparently: users do not need to use or install a tool to

generate that code. As a result Shy is as simple to use as a

conventional library. With little configuration effort, the code

generation is automatically enabled in IDEs like Eclipse or

IntelliJ. Finally, the framework is very small (around 885

source lines of code), so it can be easily be customized, if

needed.

11. Case Study
To illustrate the utility of Shy we have implemented a num-

ber of queries and transformations in the context of QL, a

DSL for questionnaires which has been implemented using

Object Algebras before [9]. QL is similar to MiniQL, except

that it additionally features an if-then-else construct, com-

puted questions (which will appear read only), and a richer

expression language. For more information on the features

of QL we refer to [7].

11.1 QL Queries and Transformations
The queries extract derived information from a QL program,

such as the set of used variables, the data and control de-

pendencies between questions, and the global type environ-

ment. The transformations include two transformations of

language extensions to the base language. The first realizes

a simple desugaring of “unless(c)...” to “if(not(c))...”. The

second desugaring statically unfolds a constant bound loop

construct (“repeat (i)...”) and renames variables occurring

below it accordingly. Finally, we have implemented a sim-
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Operation Exp (18) Stmt (5) Form (1) %

Collect variables 1 4%

Data dependencies 3 1 17%

Control dependencies 4 1 21%

Type environment 2 8%

Rename variable 1 2 13%

Inline conditions 4 17%

Desugar “unless” 1 4%

Desugar “repeat” 1 3 16%

Table 1. Number of overriden cases per query and transfor-

mation in the context of the QL implementation.

ple rename variable operation, and a flattening normalizer

which inlines the conditions of nested if-then constructs.

Table 1 shows the number of cases that had to be over-

ridden to implement each particular operation. The top row

shows the number of constructs for each syntactic category

in QL (Exp, Stmt, and Form). As can be seen, none of the

operations required implementing all cases. The last column

shows the number of overridden cases as a percentage. For

this set of queries and transformations, almost no expres-

sion cases needed to be overridden, except the “Var” case

in collect variables, rename variable and desugar “repeat”4.

The cases required for desugaring include the case of the

language extension (e.g. Unless and Repeat, respectively).

These cases are not counted in the total in the first row but

are used to compute the percentage.

11.2 Chaining Transformations
A typical compiler consists of many transformations chained

together in a pipeline. Shy transformations support this pat-

tern by passing transformation algebras as the base alge-

bra to the implementation of another transformation. For in-

stance, the desugar unless transformation desugars the “un-

less” statement to “if” statements in another algebra. The

latter can represent yet another transformation.

In the context of QL, “unless” desugaring, condition in-

lining and variable renaming can be chained together as fol-

lows:

alg = new Desugar<>(new Inline<>(
new Rename<>(Collections.singletonMap("x", "y"),
new Format())));

The chained transformation alg first desugars “unless”,

then inlines conditions, and finally renames xs to ys. The

Rename transformation gets as base algebra an instance of

Format, a pretty printer for QL.

The algebra alg can now be used to create questionnaires:

Function<IFormatWithPrecedence, IFormat> pp
= alg.form("myForm", Arrays.asList(

alg.unless(alg.var("x"),
alg.question("x", "X?", new TBoolean()))));

4 Note, however, that the dependency extraction queries reuse the collect

variables query on expressions.
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Figure 17. Performance comparison of control dependen-

cies query.

Since inlining is a contextual transformation, the result

of constructing this simple questionnaire is a function object

representing the “to be inlined” representation of the ques-

tionnaire after desugaring. The IFormatWithPrecedence and

IFormat types are formatting operations, respectively rep-

resenting expressions and statements; these types originate

from the Format algebra passed to Rename.

Calling the function with a boolean expression represent-

ing true will trigger inlining of conditions and renaming.

The result is then a formatting object (IFormat) which can

be used to print out the transformed questionnaire:

form myForm { if (true && !y) y "X?" boolean }

As can be seen, the variable x has been renamed to y. The

(renamed) condition y is now negated, because of the desug-

aring of “unless”. Finally, the result of inlining conditions

can be observed from the conjunction in the if statement.

11.3 Shy Performance vs Vanilla ASTs
We compared the performance characteristics of the oper-

ations implemented using Shy with respect to vanilla im-

plementations based on ordinary AST classes with ordi-

nary methods representing the transformations and queries.

In the vanilla implementation, the program was parsed into

an AST structure, and then the operation was invoked and

measured. In the case of the Shy queries, constructing the

“AST” corresponds to executing the query, so we measured

that. For context-dependent transformations, however, build-

ing the “AST” corresponds to constructing the function to

execute the transformation, hence we only measured invok-

ing this function. The vanilla query implementations use the

same monoid structures as in Shy.

The operations were executed on progressively larger QL

programs (up to 140Kb). The QL programs represent ques-

tionnaires describing a binary search problem (a number
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transformation.

guessing game) and are automatically generated, with in-

creasing search spaces. The benchmarks were executed on

a 2.6GHz MacBook Pro Intel Core i5 with 8GB memory.

The JVM was run in 64bit server mode and was given 4Gb

of heapspace to minimize the effect of garbage collection

pauses. Each benchmark was run without measuring first, to

warm-up the JVM. The measurements presented here do not

include warm-up time.

The comparison of the control dependencies query is

shown in Figure 17. The plot shows that the performance

is quite comparable. On average, the Shy implementation

of the query seems a little slower. This is probably caused

by the extensive use of interfaces in the Shy framework,

whereas the AST-based implementation only uses abstract

and concrete classes. For transformations the performance

difference is slightly more pronounced. Figure 18 shows the

performance comparison of the inline conditions transfor-

mation. The greater difference can be explained by the fact

that creating a new structure in a Shy transformation in-

volves dynamically dispatched method calls instead of stati-

cally bound constructor calls.

11.4 Shy vs Vanilla Regarding Code Size
The percentages shown in Table 1 illustrate the structure-

shyness of queries and transformations implemented using

Shy. Table 2 shows the absolute number of source lines of

code (SLOC, lines of code without counting empty lines and

comments). For the vanilla AST-based implementation we

only show the total SLOC count, since all operations are

scattered over the respective AST classes. For the Shy im-

plementation, each query and operation is realized a sepa-

rate class or interface, extending the interfaces generated by

Shy. In total, one can observe that the Shy-based implemen-

tation requires less than half of the number of lines of code

Component SLOC

Object Algebra interfaces 71

Collect variables 10

Data dependencies 30

Control dependencies 58

Type environment 15

Rename variable 27

Inline conditions 48

Desugar “unless” 10

Desugar “repeat” 35

Total Shy-based operations 304

AST based implementation 661

Table 2. Source Lines of Code (SLOC) statistics: Shy im-

plementation vs Vanilla AST implementation.

required in the vanilla implementation. Note also that Shy
supports a much more modular design, where both the AST

data type and the set of operations can be extended without

having to modify existing code.

12. Related Work
Structure-shy traversals have been an active research topic.

Our approach to structure shy traversal is unique in that it

supports separate compilation, modular type checking and

data type extension. Furthermore, it can be applied in main-

stream languages such as Java. While some approaches sup-

port some of these features, to the best of our knowledge, no

approach supports all of them.

Adaptive Object-Oriented Programming (AOOP) AOOP

is an extension of object-oriented programming aimed at in-

creasing the flexibility and maintainability of programs [17].

AOOP promotes the idea of structure-shyness to achieve

those goals. In AOOP it is possible to select parts of a struc-

ture that should be visited. This is useful to do traversals on

complex structures and focus only on the interesting parts

of the structure relevant for computing the final output. The

original approach to AOOP was based on a domain-specific

language [17]. DJ is an implementation of AOOP in Java

using reflection [22]. More recently DemeterF [5] improved

previous approaches to AOOP by providing support for type-

safe traversals, generics and data-generic function genera-

tion. Shy shares with AOOP the use of structure-shyness

as a means to increase flexibility and adaptability of pro-

grams. Most AOOP approaches, however, are not type-safe.

The exception is DemeterF where a custom type system was

designed to ensure type-safety of generic functions. Unlike

DemeterF, which is a separate language, Shy is a Java li-

brary. Moreover, compilation of DemeterF programs is im-

plemented through static weaving, and thus appears to pre-

clude separate compilation.
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Strategic Programming Strategic programming is an ap-

proach to data structure traversal, which originated in term

rewriting. Visser et al. extended the rewriting strategies

of [3] with generic one-level traversal operators [27] en-

abling a style of term rewriting where computations are rep-

resented by simple, conditional rewrite rules, but the appli-

cation of such rules is controlled separately using the con-

cept of a strategy. Strategies can be primitive (e.g., “fail”)

or composed using combinators (e.g., “try s else s′”). These

and other combinators were formalized in a core language

for strategic rewriting in [26].

The strategy concept has since then been ported to other

paradigms. JJTRAVELER is an OO framework for strategic

programming [28]. Lämmel et al. introduced typed strategy

combinators in Haskell [14]. The relation between strategic

programming and AOOP has been explored in [16].

The key tenet of strategic programming is separation of

concerns: actual computation and traversal are specified sep-

arately. In Shy, the traversal of a data structure is also spec-

ified separately (in a super-interface), however, it is fixed

for specific styles of queries and transformations. For in-

stance, both queries and transformations employ an inner-

most, bottom-up strategy.

The distinction between queries and transformations al-

so originates from existing work in strategic programming.

Lämmel et al. [14] discuss type unifying and type preserving

traversals. Type unifying traversals correspond to queries,

where all data type constructors are unified into a single

monoid. Analogously, Shy transformations are type preserv-

ing in the sense that a transformation is an algebra which

maps constructor calls to another algebra of the same type.

The ASF+SDF program transformation system distin-

guishes transforming and accumulating traversals, which

correspond to our transformations and queries, respective-

ly [25]. Furthermore, an accumulating transforming traver-

sal combines both styles, by tupling the accumulated re-

sult and the transformed tree. This combination could easily

be generated by Shy by having the boilerplate code con-

struct the monoid and the transformed term in parallel (see

Fig. 19).

Structure-Shy Traversals with Visitors A standard way to

remove boilerplate in OOP is to use default visitors [18].

Default visitors can be used in similar ways to our generic

traversals. Many programmers using the visitor pattern cre-

ate such default visitor implementations to avoid boilerplate

code. There are two important differences to our work. First-

ly conventional visitors are not extensible in a type-safe way.

Secondly, with Shy the code for generic traversals is auto-

matically generated, whereas with default visitors such code

usually has to be implemented by hand.

Visser [28] adapted the strategy combinators of Strat-

ego [26, 27] to combinators that operate on object-oriented

Visitors [8]. The resulting framework JJTRAVELER solves

the problem of entangling traversal control within the accept

interface AccuTrafoExp<M,E> extends
ExpAlg<Pair<M,E>> {

Monoid<M> m(); ExpAlg<E> expAlg();
default Pair<M,E> Var(String s) {
return new Pair<>(m().empty(),

expAlg().Var(s));
}
default Pair<M,E> Lit(int i) {
return new Pair<>(m().empty(),

expAlg().Lit(i));
}
default Pair<M,E> Add(Pair<M,E> e1, Pair<M,E> e2)
{
return new Pair<>(m().join(e1.fst(), e2.fst()),

expAlg().Add(e1.snd(), e2.snd()));
}

}

Figure 19. Combining query and transformation.

methods, or in the Visitors themselves (which only allow

static specialization). A challenge not addressed by JJTRAV-

ELER is type safety of traversal code: either the combinators

needs to be redefined for each data type, or client code needs

to cast the generic objects of type AnyVisitable to the spe-

cific type. Even if specific combinators would be generated,

however, the traversed data types would not be extensible.

Another approach to improve upon the standard Visi-

tor pattern is presented in Palsberg et al. [23]. This work

particularly addressed the fact that traditional Visitors op-

erate on a fixed set of classes. As a result, the data type

can not be extended without changing all existing Visitors

as well. The proposed solution is a generic Walkabout class

which accesses sub-components of arbitrary data structures

using reflection. Unfortunately, the heavy use of reflection

make Walkabouts significantly slower than traditional Visi-

tors. The authors state that the Walkabout class could be gen-

erated to improve performance, but note that the addition of a

class could trigger regeneration. As a result the pattern does

not support separate compilation. Our solution obtains the

same kind of default behavior for traversal, without losing

extensibility, type safety, or separate compilation.

Whereas the Walkabout provides generic navigation over

an object structure, this navigation can be programmed ex-

plicitly using guides [4]. Guides insert one level of indirec-

tion between recursing on the children of a node in visit

methods: the guide decides how to proceed the traversal.

Since guides needs to define how to proceed for each type

that will be visited, they suffer from the same extensibility

problem as ordinary Visitors. Generic guides, on the other

hand, are dynamically typed and use reflection to call appro-

priate visit methods. The Walkabout can be formulated as

such a generic guide.

Structure-Shy Traversals in Functional Programming In

functional programming there has been a lot of research

on type-safe structure-shy traversals. Lämmel and Peyton
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Jones’ “Scrap your Boilerplate” (SyB) [11–13] series intro-

duced a practical design pattern for doing generic travers-

als in Haskell. The simple queries and transformations in

Shy were partly inspired by SyB. However SyB and Shy
use very different implementation techniques. SyB is imple-

mented in Haskell and relies on a run-time type-safe cast

mechanism. This approach allows SyB traversals to be en-

coded once-and-forall using a single higher-order function

called gfoldl. In contrast, in Shy Java annotations are used

to generate generic traversals for each structure.

A drawback of SyB traversals is that they are notoriously

slow, partly due to the use of the run-time cast [1]. Another

notable difference between SyB and Shy is with respect

to extensibility. While Shy supports extensibility of both

traversals and structures, the original SyB approach did not

support any extensibility. Only in later work, Lämmel and

Peyton Jones proposed an alternative design for SyB, based

on type classes [30]. This design supports extensibility of

traversals, but not of the traversed structures.

Closest to Shy is an approach proposed by Lämmel et

al. [15] for dealing with the so-called “large bananas”. A

large banana corresponds to the fold algebra of a complex

structure. Object Algebras, which we use in our work, are an

OO encoding of fold algebras [19, 20]. However Lämmel

et al. work has not dealt with extensibility. Interestingly

in their future work Lämmel et al. did mention that they

would like “to cope with incomplete or extensible systems

of datatypes”.

Language Extensions for Queries Inspired by XPath/X-

Query there has been some work on adding support for sim-

ilar types of queries on object-oriented structures. For exam-

ple the work on Cω [2] extends C# with generalized member

access, which allows simple XPath-like path expressions.

Thus in Cω it is possible to express queries quite concise-

ly. However, in contrast to Shy Cω is a language extension

and it does not deal with transformations.

Eliminating Boilerplate in Design Patterns Design pat-

terns [8] improve the design and modularity of object-

oriented programs. However, the implementation of design

patterns sometimes requires significant amounts of boiler-

plate code. There has been some work on implementing

design patterns in AspectJ to achieve reusability and modu-

larity [10], and thus eliminate some of the boilerplate code.

A challenge with traditional design patterns, however, is that

the boilerplate code is not always mechanical, due to many

possible implentation choices. Our work proposes a num-

ber of design patterns for traversals. Because implementing

these design patterns by hand would be quite tedious, we au-

tomatically generate the code for such design patterns using

Shy. Fortunatelly, in contrast to many of the traditional de-

sign patterns, the code for generic traversals is highly regular

and easy to generate, and can be completely eliminated.

Object Algebras Shy traversals are based on Object Alge-

bras [19]. The original motivation for object algebras was as

a design pattern for OO programming that allowed improved

extensibility and modularity of programs. Using object al-

gebras it is possible to solve the well-known “Expression

Problem” [29]. Later work [21, 24] has explored the use of

Object Algebra combinators, and generalizations of object

algebras to improve expressiveness and modularity. In par-

ticular it has been claimed that Object Algebras can be used

to do feature-oriented programming [21], and to encode at-
tribute grammars [24]. One domain where Object Algebras

are especially useful is in the implementation of (extensible)

languages. The QL language used in our case study is based

on Gouseti et al. [9]. That work provides a realistic imple-

mentation of an extensible domain-specific language using

Object Algebras. In contrast to our work, which focus on re-

moving boilerplate code, previous work on Object Algebras

was mostly motivated by improved programming support for

extensibility and modularity. The combination of extensibil-

ity (inherited for free from Object Algebras) and structure-

shy type-safe traversals adds a new dimension to our work

that, as far as we know, has not been explored previously.

13. Conclusion
This paper showed how various types of default traversals

for complex structures can be automatically provided by

Shy. Shy traversals are written directly in Java and are type-

safe, extensible and separately compilable. There has always

been a tension between the correctness guarantees of static

typing, and the flexibility of untyped/dynamically-typed ap-

proaches. Shy shows that even in type systems like Java’s,

it is possible to get considerable flexibility and adaptability

for the problem of boilerplate code in traversals of complex

structures, without giving up modular static typing.

There are many avenues for future work. One area of re-

search is to extend Shy traversals to support flexible traver-

sal strategies, similarly to strategic programming [3, 25, 26].

Another line of work worth exploring is to adopt generali-

zations of object algebras [21] for added expressiveness of

Shy traversals.
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A. Appendix
A.1 Complete Code
A.1.1 OO Approach for usedVars and rename

Below is the complete code for Fig. 2 (left). It implements

usedVars and rename in the QL example, as an OO approach.

class Form {
String name;
List<Stmt> body;
Form(String id, List<Stmt> body) {
this.name = id;
this.body = new ArrayList<Stmt>(body);

}
Set<String> usedVars() {
Set<String> vars = new HashSet<>();
body.forEach(s -> vars.addAll(s.usedVars()));
return vars;

}
Form rename(String n1, String n2) {
List<Stmt> ss = new ArrayList<>();
for (Stmt s: body) ss.add(s.rename(n1, n2));
return new Form(name, ss);

}
}

abstract class Stmt {
abstract Set<String> usedVars();
abstract Stmt rename(String n1, String n2);

}

class If extends Stmt {
Exp cond;
Stmt then;
If(Exp cond, Stmt then) {
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this.cond = cond;
this.then = then;

}
Set<String> usedVars() {
Set<String> vars =

new HashSet<>(cond.usedVars());
vars.addAll(then.usedVars());
return vars;

}
If rename(String n1, String n2) {
return new If(cond.rename(n1, n2),

then.rename(n1, n2));
}

}

class Question extends Stmt {
String name, label, type;
Question(String n, String l, String t) {
this.name = n;
this.label = l;
this.type = t;

}
Set<String> usedVars() {
return emptySet();

}
Question rename(String n1, String n2) {
String newN = name.equals(n1) ? n2 : name;
return new Question(newN, label, type);

}
}

abstract class Exp {
abstract Set<String> usedVars();
abstract Exp rename(String n1, String n2);

}

class Lit extends Exp {
int n;
Lit(int n) {
this.n = n;

}
Set<String> usedVars() {
return emptySet();

}
Lit rename(String n1, String n2) {
return new Lit(n);

}
}

class Var extends Exp {
String x;
Var(String name) {
this.x = name;

}
Set<String> usedVars() {
return Collections.singleton(x);

}
Var rename(String n1, String n2) {
String newN = x.equals(n1) ? n2 : x;
return new Var(newN);

}
}

class GEq extends Exp {
Exp lhs, rhs;

GEq(Exp lhs, Exp rhs) {
this.lhs = lhs;
this.rhs = rhs;

}
Set<String> usedVars() {
Set<String> vars = new HashSet<>(lhs.usedVars());
vars.addAll(rhs.usedVars());
return vars;

}
GEq rename(String n1, String n2) {
return new GEq(lhs.rename(n1, n2),

rhs.rename(n1, n2));
}

}

A.1.2 Rename implementing the QLAlg interface
The following code gives the implementation of Rename that

implements QLAlg in Section 3.2.

class Rename<E, S, F> implements QLAlg<E, S, F> {
private QLAlg<E, S, F> alg;
private String from, to;
public Rename(QLAlg<E, S, F> alg, String from,

String to) {
this.alg = alg;
this.from = from;
this.to = to;

}
public F Form(String id, List<S> stmts) {
return alg.Form(id, stmts);

}
public S If(E c, S t) {
return alg.If(c, t);

}
public S Question(String n, String l, String t) {
n = n.equals(from) ? to : n;
return alg.Question(n, l, t);

}
public E Lit(int n) {
return alg.Lit(n);

}
public E Var(String x) {
x = x.equals(from) ? to : x;
return alg.Var(x);

}
public E GEq(E l, E r) {
return alg.GEq(l, r);

}
}

A.1.3 QLAlgQuery: generated code
The generated code for QLAlgQuery by Shy in Fig. 4.

public interface QLAlgQuery<R>
extends QLAlg<R, R, R> {

Monoid<R> m();

default R Form(java.lang.String p0,
java.util.List<R> p1) {

R res = m().empty();
res = m().join(res, m().fold(p1));
return res;

}
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default R Geq(R p0, R p1) {
R res = m().empty();
res = m().join(res, p0);
res = m().join(res, p1);
return res;

}

default R If(R p0, R p1) {
R res = m().empty();
res = m().join(res, p0);
res = m().join(res, p1);
return res;

}

default R Lit(int p0) {
R res = m().empty();
return res;

}

default R Question(java.lang.String p0,
java.lang.String p1, java.lang.String p2) {

R res = m().empty();
return res;

}

default R Var(java.lang.String p0) {
R res = m().empty();
return res;

}

}

A.1.4 QLAlgTransform and QLAlgTrans: generated code
The code for QLAlgTransform and its class representation

QLAlgTrans for use, generated by Shy. See Fig. 5.

public interface QLAlgTransform<A0, A1, A2>
extends QLAlg<A0, A1, A2> {

QLAlg<A0, A1, A2> qLAlg();

default A2 Form(java.lang.String p0,
java.util.List<A1> p1) {

return qLAlg().Form(p0, p1);
}

default A0 Geq(A0 p0, A0 p1) {
return qLAlg().Geq(p0, p1);

}

default A1 If(A0 p0, A1 p1) {
return qLAlg().If(p0, p1);

}

default A0 Lit(int p0) {
return qLAlg().Lit(p0);

}

default A1 Question(java.lang.String p0,
java.lang.String p1, java.lang.String p2) {

return qLAlg().Question(p0, p1, p2);
}

default A0 Var(java.lang.String p0) {

return qLAlg().Var(p0);
}

}

public class QLAlgTrans<A0, A1, A2>
implements QLAlgTransform<A0, A1, A2> {

private QLAlg<A0, A1, A2> alg;

public QLAlgTrans(QLAlg<A0, A1, A2> alg) {
this.alg = alg;

}

public QLAlg<A0, A1, A2> qLAlg() {return alg;}

}

A.1.5 G_ExpAlgQuery: generated code
The generated code for G_ExpAlgQuery by Shy in Fig. 9.

public interface G_ExpAlgQuery<A0>
extends ExpAlg<A0> {

Monoid<A0> mExp();

default A0 Add(A0 p0, A0 p1) {
A0 res = mExp().empty();
res = mExp().join(res, p0);
res = mExp().join(res, p1);
return res;

}

default A0 Lit(int p0) {
A0 res = mExp().empty();
return res;

}

default A0 Var(java.lang.String p0) {
A0 res = mExp().empty();
return res;

}

}

A.1.6 G_ExpAlgTransform and G_LamAlgTransform:
generated code

Below is the generated code for G_ExpAlgTransform and

G_LamAlgTransform by Shy in Fig. 14.

public interface G_ExpAlgTransform<A, B0>
extends ExpAlg<Function<A, B0>> {

ExpAlg<B0> expAlg();

default <B> List<B> substListExpAlg(List<Function<
A, B>> list, A acc) {

List<B> res = new ArrayList<B>();
for (Function<A, B> i : list)
res.add(i.apply(acc));

return res;
}
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default Function<A, B0> Add(Function<A, B0> p0,
Function<A, B0> p1) {

return acc -> expAlg().Add(p0.apply(acc),
p1.apply(acc));

}

default Function<A, B0> Lit(int p0) {
return acc -> expAlg().Lit(p0);

}

default Function<A, B0> Var(java.lang.String p0) {
return acc -> expAlg().Var(p0);

}

}

public interface G_LamAlgTransform<A, B0>
extends LamAlg<Function<A, B0>> {

LamAlg<B0> lamAlg();

default <B> List<B> substListLamAlg(List<Function<
A, B>> list, A acc) {

List<B> res = new ArrayList<B>();
for (Function<A, B> i : list)
res.add(i.apply(acc));

return res;
}

default Function<A, B0> Apply(Function<A, B0> p0,
Function<A, B0> p1) {

return acc -> lamAlg().Apply(p0.apply(acc),
p1.apply(acc));

}

default Function<A, B0> Lam(java.lang.String p0,
Function<A, B0> p1) {

return acc -> lamAlg().Lam(p0, p1.apply(acc));
}

}

A.1.7 Util.cons: an auxiliary method
The auxiliary method Util.cons is implemented as follows,

for the De Bruijn example in Fig. 14.

public class Util {
public static <X> List<X> cons(X x, List<X> l) {
l = new ArrayList<>(l);
l.add(0, x);
return l;

}
}

A.1.8 PrintExpLam: a pretty printer for ExpAlg and
LamAlg

The class PrintExpLam used in Section 7.1.

class PrintExpLam implements ExpAlg<String>,
LamAlg<String> {

public String Lam(String x, String e) {
return "\\" + x + "." + e;

}
public String Apply(String e1, String e2) {
return "(" + e1 + " " + e2 + ")";

}
public String Var(String s) { return s; }
public String Lit(int i) { return i + ""; }
public String Add(String e1, String e2) {
return "(" + e1 + " + " + e2 + ")";

}
}
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